Помощь
Добавить в избранное
Музыка Dj Mixes Альбомы Видеоклипы Топ Радио Радиостанции Видео приколы Flash-игры
Музыка пользователей Моя музыка Личный кабинет Моя страница Поиск Пользователи Форум Форум
  #1  
Старый 02.08.2025, 01:47
hopaxom869@amxyy.com hopaxom869@amxyy.com вне форума
Живу я здесь
 
Регистрация: 25.08.2024
Сообщений: 23,109
По умолчанию Ai Engineering By Yusuf Didighar


Ai Engineering By Yusuf Didighar
Published 8/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 2h 1m | Size: 842 MB


AI Engineering with Machine Learning, NLP, and Generative AI
What you'll learn
Design and train ML and NLP models using modern frameworks.
Build and fine-tune generative models for creative AI applications.
Develop and deploy AI systems in production environments.
Understand ethical and societal implications of AI systems.
Requirements
Python programming basics, numpy, pandas, matplotlib
Description
This comprehensive course is designed to equip learners with the technical skills and conceptual understanding required to engineer modern AI solutions. Covering the full AI development lifecycle, the course blends core machine learning (ML) techniques with advanced natural language processing (NLP) and cutting-edge generative AI (GenAI) models.Students will begin with foundational concepts in supervised and unsupervised learning, progressing through real-world model development, deployment, and optimization. They will then explore NLP techniques such as text preprocessing, embeddings, sentiment analysis, and language modeling. The course culminates with hands-on experience in building and deploying generative AI applications using models like GPT, diffusion models, and multimodal transformers.Key Topics Covered:Foundations of Machine Learning (regression, classification, clustering)Model evaluation, tuning, and pipeline designNatural Language Processing (tokenization, word embeddings, transformers)Deep learning for NLP (RNNs, LSTMs, attention, BERT, GPT)Generative AI concepts and applications (text, image, and code generation)Responsible AI, model interpretability, and bias mitigationEnd-to-end AI engineering: MLOps, APIs, and deploymentLearning Outcomes:By the end of this course, learners will be able toesign and train ML and NLP models using modern frameworks.Build and fine-tune generative models for creative AI applications.Develop and deploy AI systems in production environments.Understand ethical and societal implications of AI systems.
Who this course is for

Цитата:
Buy Premium From My Links To Get Resumable Support and Max Speed https://rapidgator.net/file/f5ae1202...ering.rar.html
https://nitroflare.com/view/1047F7D4...ngineering.rar
Ответить с цитированием
Ответ


Опции темы

Ваши права в разделе
Вы не можете создавать темы
Вы не можете отвечать на сообщения
Вы не можете прикреплять файлы
Вы не можете редактировать сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Музыка Dj mixes Альбомы Видеоклипы Каталог файлов Радио Видео приколы Flash-игры
Все права защищены © 2007-2025 Bisound.com Rambler's Top100