Помощь
Добавить в избранное
Музыка Dj Mixes Альбомы Видеоклипы Топ Радио Радиостанции Видео приколы Flash-игры
Музыка пользователей Моя музыка Личный кабинет Моя страница Поиск Пользователи Форум Форум

   Сообщения за день
Вернуться   Bisound.com - Музыкальный портал > Программы, музыкальный soft

Ответ
 
Опции темы
  #1  
Старый 16.06.2025, 22:54
hopaxom869@amxyy.com hopaxom869@amxyy.com вне форума
Живу я здесь
 
Регистрация: 25.08.2024
Сообщений: 21,456
По умолчанию Economic Dispatch For Natural Gas-Electricity Networks



Economic Dispatch For Natural Gas-Electricity Networks
Published 6/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 2h 25m | Size: 1.46 GB
Apply Python & GAMS for Optimisation & Data Science to Electricity & Natural Gas Grids
What you'll learn


Learn how to model electricity-gas grids in Python and GAMS
All the code is explained line by line - great for beginners
The content is updated often - visit often to keep updated!
Download all the code!
Requirements
Ideal for beginners! Just have Python installed!
Description
- The course gets updated every 6-12 months. Visit often to download new material and watch new videos.- Course Overview: This course, "Economic Dispatch for Natural Gas-Electricity Networks," provides a comprehensive introduction to the modelling, formulation, and implementation of coupled energy systems. It focuses on the economic dispatch problem, where the goal is to minimise the cost of supplying energy while considering the physical and operational constraints of both electricity and natural gas networks. The course begins with an overview of the system and its mathematical formulation, followed by downloadable materials that include the model files in Python and GAMS. Students are introduced to a simplified yet realistic system where electricity and natural gas interact through common infrastructure, such as gas-fired power plants.In the implementation section, the course guides learners through the development of Python and GAMS-based models. This includes defining input data for both systems, setting up variables, and coding relevant constraints. Participants will solve and interpret the optimisation results using both platforms. The final section explores model extensions and summarises key takeaways. The course is ideal for students, researchers, and professionals in energy systems engineering who seek practical insights into integrated energy modelling and decision-making under economic criteria.
Who this course is for
Energy Economists
Quant Developers
Software engineers with a focus on Energy
Energy Professionals

Ответить с цитированием
Ответ



Ваши права в разделе
Вы не можете создавать темы
Вы не можете отвечать на сообщения
Вы не можете прикреплять файлы
Вы не можете редактировать сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Музыка Dj mixes Альбомы Видеоклипы Каталог файлов Радио Видео приколы Flash-игры
Все права защищены © 2007-2025 Bisound.com Rambler's Top100