Помощь
Добавить в избранное
Музыка Dj Mixes Альбомы Видеоклипы Топ Радио Радиостанции Видео приколы Flash-игры
Музыка пользователей Моя музыка Личный кабинет Моя страница Поиск Пользователи Форум Форум

   Сообщения за день
Вернуться   Bisound.com - Музыкальный портал > Программы, музыкальный soft

Ответ
 
Опции темы
  #1  
Старый 11.01.2025, 23:51
hopaxom869@amxyy.com hopaxom869@amxyy.com на форуме
Живу я здесь
 
Регистрация: 25.08.2024
Сообщений: 20,321
По умолчанию Building Intelligent Ai Tutors For Domain-Specific Knowledge



Building Intelligent Ai Tutors For Domain-Specific Knowledge
Published 1/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 3h 14m | Size: 1.67 GB
Master AI Tutors: From Data Preprocessing to QA Systems, Summarization, and Real-World Deployment Techniques

What you'll learn
Understand the process of designing AI tutors for specific knowledge domains.
Learn to preprocess and analyze domain-specific data.
Develop skills to build retrieval-based systems and enhance them with advanced summarization techniques.
Optimize and evaluate AI tutors for performance and effectiveness.
Prepare for practical applications of AI tutoring systems in real-world scenarios.
Requirements
Python programming language course
Machine Learning course
Description
This comprehensive course introduces participants to the end-to-end process of developing AI tutors tailored to specific knowledge domains. Designed for both beginners and experienced developers, it offers a structured learning path to create intelligent, domain-specific AI systems. Throughout the course, students will learn to design, implement, and optimize AI tutors using cutting-edge tools like Python, Hugging Face, TensorFlow, and Llama, gaining hands-on experience with real-world applications.The course begins with foundational concepts, including data preprocessing and extracting insights from domain-specific datasets. Students will explore techniques for generating knowledge representations using methods like TF-IDF and embeddings, setting the stage for building effective question-answering (QA) systems. Advanced modules cover the integration of pre-trained models like BERT and GPT, as well as leveraging Llama for extractive summarization, enabling AI tutors to provide precise and context-aware responses.Participants will also delve into critical aspects of deployment, including creating scalable, reliable, and secure AI systems using cloud and local infrastructures. Emphasis is placed on monitoring and continuously improving AI tutors through feedback, retraining, and performance optimization.With practical coding exercises, step-by-step guidance, and insights into real-world use cases in education, healthcare, and law, this course equips students with the skills to transform learning experiences through AI. By the end, participants will be ready to deploy their own customized AI tutors for specific domains.
Who this course is for
Educators: professors, lecturers, teachers
Machine learning specialists
Students
Specialists in any domain like medicine, law, natural sciences working with large volumes of information
Journalists
HomepageScreenshot

Ответить с цитированием
Ответ



Ваши права в разделе
Вы не можете создавать темы
Вы не можете отвечать на сообщения
Вы не можете прикреплять файлы
Вы не можете редактировать сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Музыка Dj mixes Альбомы Видеоклипы Каталог файлов Радио Видео приколы Flash-игры
Все права защищены © 2007-2025 Bisound.com Rambler's Top100