Помощь
Добавить в избранное
Музыка Dj Mixes Альбомы Видеоклипы Топ Радио Радиостанции Видео приколы Flash-игры
Музыка пользователей Моя музыка Личный кабинет Моя страница Поиск Пользователи Форум Форум

   Сообщения за день
Вернуться   Bisound.com - Музыкальный портал > Программы, музыкальный soft

Ответ
 
Опции темы
  #1  
Старый 10.06.2025, 11:18
hopaxom869@amxyy.com hopaxom869@amxyy.com вне форума
Живу я здесь
 
Регистрация: 25.08.2024
Сообщений: 19,953
По умолчанию Material Informatics: Data Science In Materials



Material Informatics: Data Science In Materials
Published 6/2025
Created by IndustryX.ai Smart Manufacturing
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English | Duration: 10 Lectures ( 10h 21m ) | Size: 4.81 GB


Data Science for Materials Engineering: AI, ML & Informatics
What you'll learn
Fundamentals of materials informatics and its role in materials design
Statistical and machine learning methods tailored for material science
Data mining, data preprocessing, and database management for materials
Working with images, graphs, and symbolic data in material development
Requirements
No prior knowledge required.
Description
Material Informatics: AI, Machine Learning & Data Science in MaterialsUnlock the future of materials science with this comprehensive course on Material Informatics - where AI, Machine Learning, and Data Science meet materials engineering. Whether you're a student, researcher, or professional, this course will help you explore the powerful intersection of materials design and informatics.In this hands-on course, you'll learn how to work with real-world material datasets, apply modern ML techniques like decision trees, clustering, and ANN, and even use tools like ChatGPT and the Materials Project API to accelerate materials discovery and design. What You'll Learn:Fundamentals of materials informatics and its role in materials designStatistical and machine learning methods tailored for material scienceData mining, data preprocessing, and database management for materialsHands-on with materials science databases and APIsWorking with images, graphs, and symbolic data in material developmentOptimization techniques including Bayesian and hyperparameter optimizationAdvanced data visualization and interpretable MLIntroduction to high-throughput experiments and structure predictionUse of Python, Jupyter Notebook, and virtual reality toolsCase studies from Additive Manufacturing and structural materialsTools & Technologies:Python, Jupyter Notebook, Materials Project APIMachine Learning AlgorithmsSynthetic data generation Who Should Enroll:Materials Science & Engineering studentsData Scientists entering material designMechanical, Metallurgical & Chemical EngineersResearchers in nanotechnology, metallurgy, or additive manufacturingAnyone interested in the future of AI-driven material development
Who this course is for
Materials Science & Engineering students
Data Scientists entering material design
Mechanical, Metallurgical & Chemical Engineers
Researchers in nanotechnology, metallurgy, or additive manufacturing
Anyone interested in the future of AI-driven material development
Homepage

Ответить с цитированием
Ответ



Ваши права в разделе
Вы не можете создавать темы
Вы не можете отвечать на сообщения
Вы не можете прикреплять файлы
Вы не можете редактировать сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Музыка Dj mixes Альбомы Видеоклипы Каталог файлов Радио Видео приколы Flash-игры
Все права защищены © 2007-2025 Bisound.com Rambler's Top100