Помощь
Добавить в избранное
Музыка Dj Mixes Альбомы Видеоклипы Топ Радио Радиостанции Видео приколы Flash-игры
Музыка пользователей Моя музыка Личный кабинет Моя страница Поиск Пользователи Форум Форум

   Сообщения за день
Вернуться   Bisound.com - Музыкальный портал > Программы, музыкальный soft

Ответ
 
Опции темы
  #1  
Старый 22.05.2025, 01:35
hopaxom869@amxyy.com hopaxom869@amxyy.com вне форума
Живу я здесь
 
Регистрация: 25.08.2024
Сообщений: 19,451
По умолчанию End-To-End Small Object Detection Project



End-To-End Small Object Detection Project
Published 5/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 650.33 MB | Duration: 1h 49m
(From Data Collection to Deployment & Customer Handover)
What you'll learn


Build a real-world object detector for cattle ticks/flies using YOLO/PyTorch from scratch.
Collect, annotate & preprocess datasets for small object detection in agriculture.
Train, evaluate & optimize models using metrics like mAP and precision.
Deploy a user-friendly AI app (Flask/FastAPI) and hand over deliverables to clients.
Prepare the project report to the cusotmer
Requirements
•Basic Python knowledge (loops, functions). No prior AI experience needed-we'll start from the basics! A Google account (for free GPU via Colab).
Description
Transform raw images into a production-ready AI solution with this comprehensive project-based course. You'll develop a complete object detection system for identifying cattle parasites - a critical challenge in livestock management. Using industry-standard YOLO models with PyTorch, we'll guide you through the entire development lifecycle from initial data collection to final deployment.Course Value Proposition:Practical, hands-on approach focused on delivering a working solutionAgriculture-specific implementation addressing real-world problemsProfessional workflow covering both technical implementation and client deliveryDeployment-ready skills that go beyond academic exercisesKey Learning Componentsata Pipeline Development:Collecting and annotating agricultural image datasetsPreprocessing techniques for small object detectionDataset augmentation and balancing methodsModel Development:YOLO architecture fundamentalsTransfer learning with pretrained weightsPerformance evaluation using industry metricsProduction Implementation:Building a FastAPI web interfaceCloud deployment optionsCreating client documentationTarget Audience:This course is designed for Python developers seeking practical AI implementation skills, agriculture professionals exploring technology solutions, and students looking to build portfolio-worthy projects. Basic Python knowledge is recommended, but no prior AI experience is required as we cover all necessary fundamentals.Technical Stack:YOLOv5/YOLOv8 (Ultralytics implementation)PyTorch frameworkFastAPI for web servicesRoboflow for data annotationGoogle Colab for GPU accelerationBy course completion, you'll have a fully functional object detection system and the skills to adapt this solution to other agricultural or small-object detection use cases. The project-based approach ensures you gain practical experience that translates directly to professional applications.
Overview
Section 1: Dection Project Introduciton
Lecture 1 Lecture 1 Project Introuduction
Section 2: Data Capturing Equipment Introudction
Lecture 2 Lecture 2 Data Collection Device Selection
Section 3: Section 2 Data Set Prepration
Lecture 3 Lecture 3 Data Collection and Preprocessing for ML
Lecture 4 Lecture 4 Image Extraction Practical Code
Lecture 5 Lecture 5 Preparing Datasets for Cattle Tick DetectionTask
Lecture 6 Lecture 6 Hands-on Data preparation using RoboFlow
Section 4: Section 4 Detection Models
Lecture 7 Lecture 7: Detection Models Introudction
Lecture 8 Lecture 8: YOLOv8 With Goolge Colab: Proactical Object Dection
Lecture 9 Lecture 9 Hands on Proactical Code
Section 5: Section 4 : Model Deployment
Lecture 10 Lecture 10: Tick Detection Web App - Frontend Architecture
Lecture 11 Lecture 11 UI Design
Section 6: Pacakge Deliver to Customer
Lecture 12 Lecture 12 Package Introuduction
Lecture 13 Lecture 13 : echnical Report & Customer Guide: Livestock Tick Detection System
Python devs who want to break into AI Computer Vision with a hands-on project.,Agriculture professionals exploring AI solutions for pest/livestock monitoring.,AI students tired of theory-ready to build & deploy a real-world model.,Freelancers looking to add object detection skills .

Ответить с цитированием
Ответ



Ваши права в разделе
Вы не можете создавать темы
Вы не можете отвечать на сообщения
Вы не можете прикреплять файлы
Вы не можете редактировать сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.
Быстрый переход


Музыка Dj mixes Альбомы Видеоклипы Каталог файлов Радио Видео приколы Flash-игры
Все права защищены © 2007-2025 Bisound.com Rambler's Top100